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Motivation

* How to generate immediate recommendation?
* Pre-computing top-k preferred items for users?

a User interests are evolving

>} New items are emerging

* Distributed/parallel computing

PisTributed
_HB gpCompuTing
i

&E -



Economic and Effective Way
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Economic and Effective Way
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Related Work

e Dimension Reduction Techniques for Recommendation Systems

* Matrix Factorization (KDD’11)
* Map users and items into low-dimension latent space

e Content-aware Matrix Factorization (RecSys’13, ICDM’15)
* Take content information into account, help solve cold-start problem

* Weighted Regularized Matrix Factorization
* Work well in collaborative filtering for implicit feedback
e Distributed Computing Techniques for RS

 Large-scale Parallel Collaborative Filtering
» Parallel update to improve efficiency
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Related Work

* Learning Hashing Codes for Recommendation Systems

e Binary Code learning method for Collaborative Filtering (KDD’12)
* Obtained binary codes preserve preference of users

* Preference Preserving Hashing (SIGIR’14)

 Come up with a novel quantization algorithm

* Discrete Collaborative Filtering (SIGIR’16)
* Tackle discrete optimization directly and efficiently

1. Cold-start problem
2. Implicit feedback
3. Classification
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* DCMF: a joint framework
* Incorporate content information into the total framework
e Solve cold-start problem

* Combine the Weighted Regularized Matrix Factorization
e Solve for implicit feedback

* Find a solution for logit loss
e Solve for classification

* A direct discrete optimization model
e Update efficiently

2017/8/17 Discrete Content-Aware Matrix Factorization 10
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Total Framework
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Alternative Update Rule
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* EXxperiment




Dataset and Metric

v Movielens, classic MovieLens 10M dataset
v Yelp, the latest Yelp Challenge dataset
v’ Amazon, a subset of product reviews and metadata for Amazon books

Data statistics

Datwset | tusers | titoms | tratings | _Density _

MovielLens 69,838 8,940 9,983,758 1.60%
Yelp 13,679 12,922 640,143 0.36%
Amazon 35,151 33,195 1,732,060 0.15%

etric: NDCG for re




Baselines

* DCF

* Hashing-based collaborative filtering.

e Outperforms almost all two-stage binary code learning methods for collaborative
filtering including BCCF, PPH, CH.

e [ibFM:
* Feature-based recommendation system.

* Has achieved the best sole-model for the track | challenge-link prediction-of KDD-
Cup 2012.

» Supports both regression and classification tasks of recommendation.
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Comparison with baselines - Regression
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Comparison with baselines - Regression
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Comparison with baselines - Regression
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Comparison with baselines - Regression
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Comparison with baselines - Regression
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Comparison with baselines - Regression
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Comparison with baselines - Classification
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Convergence Study
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* Motivation
* Proposed framework
* EXxperiment
* Conclusion




* Proposed a new framework called DCMF to hash users and items with
content information in both regression and classification tasks.

* Developed an efficient discrete optimization algorithm for tackling
discretized constraints as well as interaction regularization.

* Proved superiority in 3 public datasets
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