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Motivation

Google News Recommendation

Tasks:  recommends new articles 
based on click and search History

Scale: 

• millions of users
• millions of articles
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Amazon Product Recommendation
Tasks:  recommends new articles based on 
click and search History

Scale: 
• 300 million users
• 480 million products

Motivation
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Motivation

• How to generate immediate recommendation?
• Pre-computing top-k preferred items for users?

• Distributed/parallel computing

User interests are evolving 

New items are emerging

A lot of machines
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Economic and Effective Way 
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Economic and Effective Way 
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Related Work

• Dimension Reduction Techniques for Recommendation Systems
• Matrix Factorization (KDD’11)

• Map users and items into low-dimension latent space

• Content-aware Matrix Factorization (RecSys’13, ICDM’15)
• Take content information into account, help solve cold-start problem

• Weighted Regularized Matrix Factorization
• Work well in collaborative filtering for implicit feedback

• Distributed Computing Techniques for RS
• Large-scale Parallel Collaborative Filtering

• Parallel update to improve efficiency
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Related Work

• Learning Hashing Codes for Recommendation Systems
• Binary Code learning method for Collaborative Filtering (KDD’12)

• Obtained binary codes preserve preference of users

• Preference Preserving Hashing (SIGIR’14)
• Come up with a novel quantization algorithm

• Discrete Collaborative Filtering (SIGIR’16)
• Tackle discrete optimization directly and efficiently

1. Cold-start problem
2. Implicit feedback
3. Classification
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Task

• DCMF: a joint framework
• Incorporate content information into the total framework

• Solve cold-start problem

• Combine the Weighted Regularized Matrix Factorization
• Solve for implicit feedback

• Find a solution for logit loss
• Solve for classification

• A direct discrete optimization model
• Update efficiently
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Total Framework
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min
𝚽,𝚿,𝐏,𝐐

෍

𝑖,𝑗∈Ω

ℓ 𝑟𝑖𝑗 , 𝜙𝑖
′𝜓𝑗

𝑠. 𝑡.𝚽 ∈ ±1 𝑀×𝐷 , 𝚿 ∈ ±1 𝑁×𝐷

𝟏′𝐏 = 0, 𝟏′𝐐 = 0, 𝐏′𝐏 = 𝑀𝐈, 𝐐′𝐐 = 𝑁𝐈

+𝛼1 𝚽− 𝐏 𝐹
2 + 𝛼2 𝚿−𝐐 𝐹

2

+λ1 𝚽− 𝐗𝐔 𝐹
2 + λ2 𝚿− 𝐘𝐕 𝐹

2 +𝛾1 𝐔 𝐹
2 + 𝛾2 𝐕 𝐹

2 +𝛽෍

𝑖,𝑗

(𝜙𝑖
′𝜓𝑗)

2
𝐔, 𝐕

balance and decorrelation 
constraints

Interaction regularization

Make use of 
implicit feedback
(challenge 2)

Content-aware term

Take content information of 
users and items into account
(challenge 1)

v
Regularization

·Regression task: 

ℓ 𝑟𝑖𝑗 , 𝜙𝑖
′𝜓𝑗 = 𝑟𝑖𝑗 − 𝜙𝑖

′𝜓𝑗
2

·Classification task: 

ℓ 𝑟𝑖𝑗 , 𝜙𝑖
′𝜓𝑗 = log 1 + 𝑒−𝑟𝑖𝑗𝜙𝑖

′𝜓𝑗
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𝐔 = 𝐗′𝐗 +
γ1
λ1
𝐈𝐹

−1

𝐗′𝚽 𝐕 = 𝐘′𝐘 +
γ2
λ2
𝐈𝐿

−1

𝐘′𝚿

𝐏 = 𝑀 𝑺𝑷, ෡𝑺𝑷 𝑻𝑷, ෡𝑻𝑷 ′ 𝐐 = 𝑁 𝑺𝑸, ෡𝑺𝑸 𝑻𝑸, ෡𝑻𝑸 ′

𝑺𝑷 ∈ ℝ𝑀×෩𝐷 ෡𝑺𝑷 ∈ ℝ𝑀×(𝐷−෩𝐷)

𝑻𝑷 ∈ ℝ𝐷×෩𝐷 ෡𝑻𝑷 ∈ ℝ𝐷×(𝐷−෩𝐷)

𝑺𝑸 ∈ ℝ𝑁×෩𝐷 ෡𝑺𝑸 ∈ ℝ𝑁×(𝐷−෩𝐷)

𝑻𝑸 ∈ ℝ𝐷×෩𝐷 ෡𝑻𝑸 ∈ ℝ𝐷×(𝐷−෩𝐷)

𝜙𝑖𝑑
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෠𝜙𝑖𝑑 =෍

𝑗∈𝕝𝑖
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෠𝜓𝑗𝑑 =෍

𝑖∈𝕝𝑗

(𝑟𝑖𝑗 − Ƹ𝑟𝑖𝑗 + 𝜙𝑖𝑑𝜓𝑗𝑑)𝜙𝑖𝑑 + 𝛼2𝑞𝑗𝑑

+λ2𝒗𝑑
′ 𝒚𝑗 − 𝛽𝜓𝑗

′𝚽′𝜙𝑑 + 𝛽𝑀𝜓𝑗𝑑

𝐾 𝑥, 𝑦 = ቊ
𝑥, 𝑥 ≠ 0
𝑦, 𝑥 = 0

(𝑟𝑖𝑗/4 − λ( Ƹ𝑟𝑖𝑗) Ƹ𝑟𝑖𝑗 + λ( Ƹ𝑟𝑖𝑗)𝜙𝑖𝑑𝜓𝑗𝑑)𝜓𝑗𝑑 (𝑟𝑖𝑗/4 − λ( Ƹ𝑟𝑖𝑗) Ƹ𝑟𝑖𝑗 + λ( Ƹ𝑟𝑖𝑗)𝜙𝑖𝑑𝜓𝑗𝑑)𝜙𝑖𝑑
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Dataset and Metric

MovieLens, classic MovieLens 10M dataset
 Yelp, the latest Yelp Challenge dataset
 Amazon, a subset of product reviews and metadata for Amazon books
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Metric: NDCG for regression
MPR for classification

Dataset #users #items #ratings Density

MovieLens 69,838 8,940 9,983,758 1.60%

Yelp 13,679 12,922 640,143 0.36%

Amazon 35,151 33,195 1,732,060 0.15%

Data statistics



Baselines
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• DCF
• Hashing-based collaborative filtering. 

• Outperforms almost all two-stage binary code learning methods for collaborative 
filtering including BCCF, PPH, CH.

• libFM: 
• Feature-based recommendation system. 

• Has achieved the best sole-model for the track I challenge-link prediction-of KDD-
Cup 2012. 

• Supports both regression and classification tasks of recommendation. 



Comparison with baselines - Regression
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• Add content information 

→ performance ↑

• Effective discrete 
optimization algorithm
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• Address cold-start 
problem well
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Comparison with baselines - Classification
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 Effectiveness of content information and iteration regularization
 Benefit of the use of logit loss
 Superiority of DCMF to DCF
 Validity of the proposed discrete optimization algorithm
 Superiority of DCMF to libFM on relatively sparse datasets



Convergence Study
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Conclusion

• Proposed a new framework called DCMF to hash users and items with 
content information in both regression and classification tasks.

Thank you!
Rui Liu, UESTC

ruiliu011@gmail.com
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• Developed an efficient discrete optimization algorithm for tackling 
discretized constraints as well as interaction regularization.

• Proved superiority in 3 public datasets


